Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672354

RESUMEN

Birds, including canaries and other birds, have become increasingly popular as pets. Bird fairs, where breeders gather and show their production in a championship setting, present a setting for possible Salmonella spp. contamination and transmission. Therefore, this study estimated the rate of Salmonella spp. isolation from cage papers, located in the bottom of cages of exotic pet birds, including canaries. Collected Salmonella isolates were used to determine the antimicrobial resistance profile to 52 antibiotics and 17 commercial disinfectants, based on pure or a mixture of acids, alcohols, aldehydes, alkalis, halogens, peroxygen, and quaternary ammonium compounds. The samples consisted of 774 cage papers taken in the 2015 Argentinean canary breeder championship, pooling three cage papers into one sterile sampling bag. Only one pool of the cage papers was positive for Salmonella spp. (0.4%), which belonged to the sample from three frill canary cages. Two strains of Salmonella serotype Glostrup were isolated, which were only resistant to sulfonamides and erythromycin and sensitive to alkali-based product PL301 AS. Although the rate of Salmonella spp. isolation from cage papers in an Argentinean canary breeder championship is low, it should not be discounted because Salmonella ser. Glostrup can be a source of human Salmonella outbreaks and they show high resistance to disinfecting products.

2.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535788

RESUMEN

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Asunto(s)
Microbioma Gastrointestinal , Zeolitas , Animales , Femenino , Aflatoxina B1 , Ácido Butírico , Dieta , Sustancias Húmicas , Inmunidad Celular , Pavos
4.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003375

RESUMEN

The selection of components within a formulation or for treatment must stop being arbitrary and must be focused on scientific evidence that supports the inclusion of each one. Therefore, the objective of the present study was to obtain a formulation based on ascorbic acid (AA) and Eudragit FS 30D microparticles containing curcumin-boric acid (CUR-BA) considering interaction studies between the active components carried out via Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC) to minimize antagonistic effects, and comprehensively and effectively treat turkey poults infected with Salmonella enteritidis (S. enteritidis). The DSC and FTIR studies clearly demonstrated the interactions between AA, BA, and CUR. Consequently, the combination of AA with CUR and/or BA should be avoided, but not CUR and BA. Furthermore, the Eudragit FS 30D microparticles containing CUR-BA (SD CUR-BA MP) showed a limited release of CUR-BA in an acidic medium, but they were released at a pH 6.8-7.0, which reduced the interactions between CUR-BA and AA. Finally, in the S. enteritidis infection model, turkey poults treated with the combination of AA and SD CUR-BA MP presented lower counts of S. enteritidis in cecal tonsils after 10 days of treatment. These results pointed out that the use of an adequate combination of AA and CUR-BA as an integral treatment of S. enteritidis infections could be a viable option to replace the indiscriminate use of antibiotics.


Asunto(s)
Curcumina , Animales , Curcumina/química , Salmonella enteritidis , Preparaciones de Acción Retardada , Ácido Ascórbico/farmacología , Pavos , Antibacterianos
5.
Front Vet Sci ; 10: 1276754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881447

RESUMEN

This study aims to evaluate the efficacy of humic acid (HA) from worm compost as an adsorbent for aflatoxin B1 (AFB1) in turkey poults. The experiment involved the inclusion of 0.25% (w/w) HA in the diet of turkey poults consuming aflatoxin-contaminated feed (250 ng AFB1/g). A total of 350 1-day-old female Nicholas-700 turkey poults were randomly allocated to five equal groups: negative control (basal diet); positive control (basal diet + 250 ng AFB1/g; HA (basal diet + 0.25% HA); HA + AFB1 (basal diet + HA + 250 ng AFB1/g); and zeolite + AFB1 (basal diet + 0.25% zeolite + 250 ng AFB1/g). Each group had seven replicates of 10 poults (n = 70). The impact of HA addition was evaluated in terms of performance parameters, relative organ weights, liver histological lesions, and serum biochemical and hematological constituents. In general, the addition of HA improved body weight (BW), body weight gain (BWG), and feed conversion rate (FCR). Furthermore, HA effectively mitigated the toxic effects caused by AFB1 in the majority of the analyzed variables. The results indicated that HA effectively counteracted the AFB1-induced toxic effects in turkey poults. Based on these findings, it can be concluded that HA is capable of removing AFB1 from the contaminated diet.

6.
Front Vet Sci ; 10: 1224647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662988

RESUMEN

A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0-16, grower d16-31, finisher d31-42, and withdrawal d42-52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16-31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET.

7.
Front Vet Sci ; 10: 1226298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496751

RESUMEN

Introduction: Coccidiosis caused by the Eimeria spp., an Apicomplexan protozoon, is a major intestinal disease that affects the poultry industry. Although most cases of coccidiosis are subclinical, Eimeria infections impair bird health and decrease overall performance, which can result in compromised welfare and major economic losses. Viable sporulated Eimeria oocysts are required for challenge studies and live coccidiosis vaccines. Potassium dichromate (PDC) is typically used as a preservative for these stocks during storage. Although effective and inexpensive, PDC is also toxic and carcinogenic. Chlorhexidine (CHX) salts may be a possible alternative, as this is a widely used disinfectant with less toxicity and no known carcinogenic associations. Methods: In vitro testing of CHX gluconate and CHX digluconate exhibited comparable oocyst integrity and viability maintenance with equivalent bacteriostatic and bactericidal activity to PDC. Subsequent use of CHX gluconate or digluconate-preserved Eimeria oocysts, cold-stored at 4°C for 5 months, as the inoculum also resulted in similar oocyst shedding and recovery rates when compared to PDC-preserved oocysts. Results and discussion: These data show that using 0.20% CHX gluconate could be a suitable replacement for PDC. Additionally, autofluorescence was used as a method to evaluate oocyst viability. Administration of artificially aged oocysts exhibiting >99% autofluorescence from each preserved treatment resulted in no oocyst output for CHX salt groups.

8.
Front Physiol ; 14: 1184636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324386

RESUMEN

Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates.

9.
Vet Sci ; 10(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36669057

RESUMEN

Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal's microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted.

10.
Front Vet Sci ; 9: 937102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847644

RESUMEN

Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated embryonated eggs of Heterakis gallinarum, potentially present in earthworms and mechanical vectors. Once an outbreak is started, infected turkeys can transmit the disease by horizontal transmission. Factors influencing horizontal transmission of histomonosis are poorly understood. Replication of horizontal transmission in experimental conditions has not been consistent, presenting an obstacle in searching for alternatives to prevent or treat the disease. Two pilot experiments and three validation experiments were conducted in the present study. In pilot experiment 1, one isolate of Histomonas meleagridis (named Buford) was used. Turkeys were fed a low-nutrient density diet corn-soy based (LOW-CS) and raised in floor pens. In pilot experiment 2, another isolate of H. meleagridis was used (named PHL). Turkeys were fed a low-nutrient density diet with the addition of wheat middlings (LOW-WM) and raised in floor pens. In experiment 3, conducted on floor pens, both isolates and diets were used in different groups. In experiment 4, turkeys were raised on battery cages and only the PHL isolate was used. Both diets (LOW-WM and LOW-CS) were used, in addition to a diet surpassing the nutritional needs of young poults (turkey starter, TS). In experiment 5, conducted in battery cages, only the PHL isolate was used, and the LOW-WM and TS diets were in different groups. The horizontal transmission was achieved only with the PHL isolate from all experiments. The transmission rate varied among experimental diets, with the TS diet having the lowest transmission rate in experiments 4 and 5. Variation was observed between experiments and within experimental groups.

11.
Transl Anim Sci ; 6(3): txac079, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35795069

RESUMEN

The importance of intestinal alkaline phosphatase (IAP) in maintaining gut health and intestinal homeostasis is well established. The objective of this study was to investigate the tolerance of poultry and swine to dietary supplementation of a novel microbial-derived alkaline phosphatase (AP; E.C. 3.1.3.1 produced by Paenibacillus lentus strain CMG3709). Studies were conducted on day-old Ross 308 chicken (n = 1,000; Study 1) and weaned piglets (n = 180; Study 2) for a duration of 42 d; and consisted of four treatment groups (TG) based on the concentration of microbial-derived AP supplemented in their diet at 0; 12,000; 20,000; and 200,000 U/kg of feed. Parameters such as animal survival, hematology, coagulation, and biochemical indices were assessed at the end of the study. The effect of microbial AP on nutrient absorption through skin pigmentation and intestinal permeability were also investigated in broilers (n = 600; Study 3). In poultry (Study 1), there were no statistically significant differences between control and TG for any of the hematological and biochemical parameters, except for a marginal increase (P < 0.05) in serum phosphorus at the highest dose. This variation was not dose-dependent, was well within the reference range, and was not associated with any clinical correlates. In swine (Study 2), hematological parameters such as leukocyte, basophil, and lymphocyte counts were lower (P < 0.05) for the two highest doses but were traced back to individual variations within the group. The biochemical indices in piglets showed no significant differences between control and supplemental groups except for glucose (P = 0.0005), which showed a high effect (P = 0.008) of the random blood collection order. Nonetheless, glucose was within the normal reference range, and were not related to in-feed supplementation of AP as they had no biological significance. The survival rate in all three studies was over 98%. Dietary supplementation of microbial-derived AP up to 16.7 times the intended use (12,000 U/kg feed) level had no negative effects in both poultry and swine. In-feed supplementation of microbial-derived AP for 28 d improved intestinal pigment absorption (P < 0.0001) and reduced intestinal paracellular permeability (P = 0.0001) in broilers (Study 3). Based on these results, it can be concluded that oral supplementation of microbial-derived AP is safe for poultry and swine and effective at improving gut health in poultry.

12.
Animals (Basel) ; 12(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625119

RESUMEN

The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.

14.
Front Vet Sci ; 9: 784387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274019

RESUMEN

The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, ß-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their combinations when grown together vs. when grown individually. The whole-genome sequence identified isolate AM1002 as Bacillus subtilis (isolate 1), isolate AM0938 as Bacillus amyloliquefaciens (isolate 2), and isolate JD17 as Bacillus licheniformis (isolate 3). The three Bacillus isolates used in the present study produce different enzymes (xylanase, cellulase, phytase, lipase, protease, and ß-glucanase). However, this production was modified when two or more Bacillus strains were combined, suggesting possible synergistic, antagonistic, or additive interactions. The Bliss analysis suggested (p < 0.05) that the combination of Bacillus strains 1-2 and 1-2-3 had intermediate effects and predicted that the combination of Bacillus strains 2-3 could have better effects than the combination of all the three Bacillus strains. In summary, the current study demonstrated the need of selecting Bacillus strains based on quantitative enzyme determination and data analysis to assess the impacts of combinations to avoid antagonistic interactions that could limit treatment efficacy. These results suggest that using Bacillus strains 2-3 together could lead to a new generation of DFMs with effects superior to those already examined in Bacillus strains 1-2-3 and, therefore, a potential alternative to growth-promoting antibiotics. More research utilizing poultry models is being considered to confirm and expand the existing findings.

15.
Microorganisms ; 10(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35208851

RESUMEN

The gut microbiota has been designated as a hidden metabolic 'organ' because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry.

16.
J Anim Sci Biotechnol ; 12(1): 23, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33541441

RESUMEN

BACKGROUND: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS: The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.

17.
Front Vet Sci ; 7: 489, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974395

RESUMEN

The effects of in ovo administration of a defined lactic acid microbiota (LAM), previously isolated from adult hens, in the cecae microbiota structure and Enterobacteriaceae colonization after exposure to virulent Escherichia coli during the hatching phase of broiler chickens were evaluated. Embryos inoculated with LAM showed a significant (P < 0.05) reduction of Enterobacteriaceae colonization at day-of-hatch (DOH) and day (d) 7. Furthermore, there was a significant increase in total lactic acid bacteria on DOH, body weight (BW) DOH, BW d7, and d0-d7 BW gain and reduced mortality d0-d7 was observed in the LAM group compared with that in phosphate-buffered saline (PBS) control. The bacterial composition at the family level revealed that the Enterobacteriaceae was numerically reduced, whereas the Ruminococcaceae was significantly increased in the LAM group when compared with that in the PBS control. Moreover, the bacterial genera Proteus and Butyricicoccus and unidentified bacterial genera of family Lachnospiraceae and Erysipelotrichaceae were significantly enriched in the LAM group. In contrast, the Clostridium of the family Peptostreptococcaceae and unidentified genus of family Enterobacteriaceae were significantly abundant in the PBS control group. In summary, in ovo administration of a defined LAM isolated from adult hens did not affect hatchability, improved body weight gain and reduced mortality at d7, induced variations in the cecae microbiota structure and reduced Enterobacteriaceae colonization on a virulent E. coli horizontal infection model in broiler chickens.

18.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974152

RESUMEN

Clostridium perfringens causes severe gastrointestinal diseases, which include necrotic enteritis (NE) in chickens, a deadly disease worldwide. We report here the draft genome sequence of Clostridium perfringens strain TAMU, which was used in developing an NE chicken challenge model. This C. perfringens TAMU genome sequence will aid in advancing potential intervention strategies to reduce NE pathogenesis.

19.
Avian Dis ; 63(4): 659-669, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31865681

RESUMEN

The aim of the present study was to evaluate the effect of a commercial Bacillus direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + Bacillus direct-fed microbial). Each group had three replicates of 10 chickens (n = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens (P < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this Bacillus-DFM added at a concentration of 106 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this Bacillus-DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this Bacillus-DFM counteracts the toxic effects of aflatoxin B1.


Evaluación de un producto comercial adicionado en el alimento elaborado con Bacillus sobre los efectos tóxicos de la aflatoxina B1, el rendimiento productivo, el estado inmunológico y los parámetros bioquímicos en suero de pollos de engorde. El objetivo del presente estudio fue evaluar el efecto de un producto comercial de Bacillus adicionado al alimento (DFM) sobre los efectos tóxicos de la aflatoxina B1, el rendimiento productivo, así como en los parámetros bioquímicos e inmunológicos en pollos de engorde. Noventa pollitos de engorde machos Cobb 500 de un día de edad fueron criados en corrales en piso por un período de 21 días. Los pollos se etiquetaron en el cuello, se pesaron individualmente y se asignaron al azar en uno de tres grupos: control negativo (alimentación basal); aflatoxina B1 (alimentación basal + 2 ppm de AFB1) y DFM (alimentación basal + 2 ppm de AFB1 + producto comercial de Bacillus). Cada grupo tenía tres réplicas de 10 pollos (n = 30/grupo). El peso corporal (BW) y la ganancia de peso corporal (BWG) se calcularon semanalmente, mientras que la ingesta de alimento (FI) y la conversión alimentaria (FCR) se determinaron cuando los pollos tenían 21 días de edad. Al día 21 de edad, todos los pollos se sangraron, se recolectaron muestras gastrointestinales y se pesaron el bazo y la bolsa de Fabricio. Este estudio confirmó que 2 ppm de aflatoxina B1 causan efectos detrimentales graves sobre los parámetros productivos, bioquímicos e inmunológicos, generando lesiones hepáticas en pollos de engorde (P < 0.05). Sin embargo, también se observó que la suplementación con el producto comercial de Bacillus proporcionó efectos benéficos que podrían ayudar a mejorar la función de la barrera intestinal, las actividades antiinflamatorias y antioxidantes, así como la inmunomodulación humoral y celular. Los resultados del presente estudio sugieren que este producto comercial de Bacillus agregado a una concentración de 106 esporas/gramo de alimento puede usarse para contrarrestar los efectos negativos que se producen cuando las aves consumen dietas contaminadas con aflatoxina B1, mostrando efectos beneficiosos en los parámetros productivos, peso relativo de órganos, lesiones hepáticas, respuesta inmune y variables bioquímicas séricas. La adición de este Bacillus podría mitigar y disminuir los problemas de aflatoxicosis en la industria avícola, mejorando la seguridad alimentaria, los problemas de salud pública y los beneficios económicos. Se requieren estudios futuros para dilucidar completamente los mecanismos específicos por los cuales este producto comercial con Bacillus contrarresta los efectos tóxicos de la aflatoxina B1.


Asunto(s)
Bacillus/química , Pollos/inmunología , Probióticos/farmacología , Aflatoxina B1/toxicidad , Alimentación Animal/análisis , Animales , Pollos/sangre , Pollos/crecimiento & desarrollo , Pollos/microbiología , Dieta/veterinaria , Masculino , Distribución Aleatoria
20.
Pathogens ; 8(4)2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31717681

RESUMEN

Two experimental models were conducted to evaluate and compare the effect of ascorbic acid (AA) or curcumin formulated in a solid dispersion (SD-CUR) as prophylactic or therapeutic alternatives to prevent or control S. Enteritidis (SE) infection in broiler chickens. In the prophylactic model, dietary administration of AA showed a significant reduction in SE counts in crop compared to the positive control (PC) group (p < 0.05), whereas in cecal tonsils (CT), SD-CUR significantly reduced SE recovery. Superoxide dismutase (SOD) activity was significantly higher in chickens supplemented with AA or SD-CUR, and total intestinal IgA levels were significantly lower in both treatments when compared to the PC group. Serum fluorescein isothiocyanate-dextran (FITC-d) levels were reduced by SD-CUR compared to PC, while AA presented significantly lower total aerobic bacteria. In the therapeutic model, only the dietary administration of AA significantly decreased SE in crop and CT on days 3 and 10 post-challenge. FITC-d levels were significantly lower in both treated groups in comparison to PC, but IgA levels were significantly reduced only by AA. The results suggest that dietary AA and SD-CUR have different modes of action to reduce SE intestinal colonization in two different challenge models in broiler chickens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...